
Sylvester's Identity and Multistep Integer- 
Preserving Gaussian Elimination* 

By Erwin H. Bareiss 

Abstract. A method is developed which permits integer-preserving elimination 
in systems of linear equations, AX = B, such that (a) the magnitudes of the co- 
efficients in the transformed matrices are minimized, and (b) the computational 
efficiency is considerably increased in comparison with the corresponding ordinary 
(single-step) Gaussian elimination. The algorithms presented can also be used for 
the efficient evaluation of determinants and their leading minors. Explicit algo- 
rithms and flow charts are given for the two-step method. The method should also 
prove superior to the widely used fraction-producing Gaussian elimination when A 
is nearly singular. 

I. Sylvester's Identity and the Evaluation of Determinants. Let A be a square 
matrix of order n with elements aij and determinant IA . Partition A and factor 
by block triangularization such that 

A = 12 A11O" (I A71A12 
A 

:lA2 
= 

~I( A22- A2A A-1A ) ' V21A22/ V 21/O A2- 

where A11 is a nonsingular square matrix of order k. Then 

(1) IAl = JA11J * 1A22- A21AI1A12I 

Multiplying both sides by IA ,I n-k-1, Eq. (1) becomes 

(2) IA 11n-k-1JAI = JA11l *(A22-A21Aj11A12)lI 
because the second determinant on the right side of (1) is of order (n -k). We 
introduce the notation 

all a12 . alk a 
a2l a22 . . a2k a2J 

(3) akj = .... ... ... ... ... (k < i, j <n); 
akl ak2 . akk ak3 

ail ai2 . aik aii 

a~j) is IAI bordered by a row and column. Now, if we apply the identity (1) to 
each element of the determinant on the right side of (2) we obtain 

/ k k 

(4) JAi[(aij , i ar(ALi')rsasi") = ak2 (k < i,j < n) 
r=1 8=1/ 

Since IA11i = akk-1), Eq. (2) takes the form of Sylvester's Identity** 
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(k) (k) 
ak+l,k+l .*. .ak+ln 

(5) IA [akk)nk1 . ... . 
(k) (k) 

an ,k+l ...a 

As can easily be shown (e.g., by perturbation of A11 in (4)) this identity also holds 
when a~kk is singular. Because the right side of (3) is a determinant, we can apply 
(5) to a k) to obtain 

a( )1+ 1+1 ... 
a~l~l,k a( )l1'j 

(6) as, (1- k- , (O <1< k). (6) aft = [a(l l) ak, 1~~+1 akk aki 
( 1) ( 1) ( 1) 
ai, 11 .. aik aij 

We note the important property that when all aij's are integers, a~k is also an 
integer. This is obvious from (3). Thus, [a(l-1)]k-l is a divisor of the last determinant 
in (6). 

Let 
-1 (.0) n (7) aoo= 1, aj = aij (ij= 1 .**,n). 

Then, for 1 = 0, (6) reduces to (3). For 1 = k -1, (6) reduces to 

a(k-1) a(k-1) 

(8) a, (- ) (k-1) a(k-1) 

This transformation (8), and in general the transformation (6), yields successively, 
as diagonal elements, principal minors a (,k+) and thus leads gradually to an ef- 
ficient calculation of the determinant A I = an(1). These minors furnish the small- 
est number (in absolute value) that can reasonably be expected from a general 
integer-preserving transformation. To see this, envisage a principal minor or de- 
terminant whose numerical value is a prime number. This value cannot be further 
reduced without introducing fractions. Thus, there is little incentive to search for 
formulas that yield smaller a .) than those given by (8). Instead, a useful question, 
which can be answered affirmatively, is: Can the a~k be computed more efficiently 
than by the recurrence formula (8)? 

Once all a(.J)'s are known, we can determine any a(.) (k > 1) by (6). If we 
calculate the elements of a row, which means that i will be fixed, the determinant 
in (6) can be expanded by the last column. We see then that the cofactors of al 
are common to each element of the row and therefore must be calculated but 
once for each row. Indeed, the cofactor of a~l) is even independent of both i and j. 
After the cofactors are determined, there will be only (k - 1 + 1) multiplications 
necessary to advance from a~(.) to a~j). If we choose to calculate the new elements 
of a column instead of a row, which means that j will be fixed instead of i, the 
determinant in (6) can be expanded by the last row and conclusions correspond- 
ing to those above can be reached also. 

Furthermore, all the cofactors are divisible by [a('l) kl. This is obvious for the 
cofactor of a~l) because it follows from (6) for a("). For the rest of the cofactors, 
it is sufficient for the proof to note that since interchanging rows or columns does 
not affect the absolute value of a determinant, the matrix A could have been ar- 
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ranged so that any one of the border elements a Y) or a('? (I + 1 _ m _ k) takes 
the place of the present corner element a (). 

Thus, a. could be calculated by an integer-preserving recurrence formula of 
the form 

k 

(9) a, = ckkaij + E Cmjamj/ a1l 
m= 1+1 

or 

F k 1!~~ 
(10) aa(k) = [c(4a(.l? + Ej c(?aj]/ a(1-1) 

where the c4'), c(m) are the divided cofactors discussed above. The last two formulas 
have the advantage of keeping the absolute value of the numerator as small as 
can reasonably be expected in general. This statement means that matrices exist 
such that dividend and divisor in (9) and (10) are relatively prime. 

As the reader may have observed, (8) is equivalent to the integer-preserving 
Gaussian elimination algorithm as already known to Jordan. In the following sec- 
tions, we shall refer to (8), i.e., 1 = k - 1 in (6), as the one-step integer-preserving 
Gaussian elimination transform, to 1 = k - 2 in (6) as the two-step integer-pre- 
serving Gaussian elimination transform, and so on, since one m-step transforma- 
tion (1 = k- m) produces the same numerical results as m one-step transforma- 
tions (1 = I-1) in the evaluation of determinants, or in the solution of systems 
of linear equations. In [1], Eq. (6) is derived using repeated one-step eliminations. 
From the multitude of transformations given by (6) we restrict ourselves in what 
follows to the one- and two-step methods. 

From (3) or (6) also follows the often useful property: If A is symmetric, then 
a .k) = a j9 (i, j > k). 

II. Integer-Preserving Transformations for the Exact Solution of Systems of 
Linear Equations. Let a linear system of equations be given by 

(1) AX = B, 

where 

/ al ... * a 
(2) A = (a ij) = *. . 1. 

an 
. .. ann 

/ain+ I . .. 
aim 

(3) B = (a)= i) * . ... 

ann+ * 
. 

*.. anm / 

and 

/ X1 . .. Xim-n 

(4) X. . 

\ X7L1 
. .. n nm-n 

To solve (1), A shall be reduced 
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(a) to triangular form with subsequent back substitution, 
(b) to diagonal form 

such that the elements of the reduced system are integers, provided the elements 
aij of 

(5) A (0) = A (3 B (A augmented by B) 

are integers. 
A. Reduction of A to Triangular Form. 
1. Division-free algorithms. The simplest reduction algorithm is given by the 

recurrence formulas (known as Gaussian elimination algorithm) 

(0) (k) a akk ak-1) (6) aj= a3j a3 = (k-i) (k-i) 
aik ai3 

(k = .1,2,2 *kn (i = k + 12 *kn) (j= k + 12 *kn, n+ 1 ,m). 
The advantage of this formula is the absence of any division operations. The dis- 
advantage lies in large, absolute integers a 

The next simplest division-free transformation is given by Eq. (1.6),t if the 
divisor is disregarded and 1 k - 2. The result is 

(k-2) (k-2) (k-2) 

ak4l,k.. ak4l,k ak.1, 
i 

akl,k-1 ak-1k akk 2) 

a(k-2) a (k-2) a(k-2) 
ai,k-1 aik aS3 

It is also instructive to obtain (7) directly from (6) instead of from (1.6) by 
applying (6) twice as follows: 

a(k-i) a(k-i) (k) lakk 1)ak3i 
a i 3 = 

|a(k-1) (k-1) 
aik ai3 

- 
(k2 

a~-2_ ak.....ikak~k..... 
) ak1 kl~ - ak-..., Jai,k1J) 

(k-2) (k-2) (k-2) (k-2), (k-2) (k-2) (k-2) (k-2) 

- lak1,klakk - ak-1kakk-1) (ak-1,k-lak i - ak-1,jakk-1) 

- (a- klk - ak...1, kak, k-1)ak 1 k-1a fJ 

- 
(k2 

a~-2 
_ k 1 ka~ k l)ak....,k-l1ak; 

(k-2) (k-2) (k-2) (k-2) (k-2) (k-2) (k-2) (k-2) 
- ak-1,k-akk ak-1,ja,k-1 + [ak 1,kak ,k-ak1,jai,k-1] 

(ka2) (k-2) (k-2) (k-2) a(k-2) (k-2) (k-2) (k-2) 
1 ak-lk-.ak ak-kjak k 1 -Lak 1kakk-aakk1 3kkakj1]j 

The two products indicated by brackets [ ] cancel. The remaining terms have the 
common factor akki1Li.1 It then follows easily that for (6) 

2) a ( (k-2) (k-2) 
ak-1,k.1 ak-1,k ak-4,J 

(k-2) (k-2 ,k-2) (k-2) (k-2) (k-2) . 

k-,-akk i,k~ai,k. ak-k ak3k1kl~ik 

(k-2) (k-2) (k-2) 

Disregarding the factor akk-1, in this equation yields (7). Therefore, the coeffi- 
cients a .9 of (7) are smaller by a factor akt-12,%1 and, in addition, can be obtained 
from a .jk2) more efficiently than those of (6) because two terms cancel and.need 

t Equation (1.6) means Eq. (6) of Section L. 
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not be calculated. This fact also implies greater numerical stability if the ai, are 
not integers. 

ai. 1 aF)lo i Ca1, fo.h Aj thma 1 (.., A ) 

2 no~~~~~~~~~~~~~~n 
. . y~~~es 

i s tt to2 
+ i ,k c mustbake 

the calculations properly. The recursion algorithm, transforming one row at a time, 
is given below by Eqs. (8); and the proper sequencing of the calculation is de- 
termined by the flow chart shown in Fig. 1. 

. (k-2) (k-2) 
(0) (k-2) ak-1l,k-l akl1,k 

ai = aij; co0 (k-2) (k-2); 
ak, k- akk 

(k-2) (k-2) (k-2) (Ic-2) 
(k-2) _akl1,k-l ak-l,k . (k-.2) __ ak ,Ic 1 ackk 

s1 - (k-2) (k-2) X -2 (k-2) (k-2) 
(8) aok1F a lts ai,kan a(12 

(o ) (ave) (pa 2) ( f kst -2)e(ko-2) Ict c2) (cte2) 

(k-2) (k-2) 
(k-i) ak-l, k-1 a k-c1,= () =k 

a~d = (1-2) (k-2) = a~jk for (k, .2 ,m 

akIca aakI 

It is worthwhile to visualize the effect of the transformations (8) on the matrix 
A (Ic-2). The equation for a(j) when formally extended to j = k - 1 and j = k 
reduces the elements a~(.k-2) (i > k) to zero for two columns, and leaves the ele- 
ments aa2l unchanged. Once the elements ) (i> k) have been determined, the 
element a~2i is transformed to zero by the formula for a This sequence in 
calculating the transformation is, of course, required only because the elements 
(8) a2) are needed to calculate ark) (i > k), and space requirements are 
minimized in the fast memory by overwriting and avoiding unnecessary working 
storage. 
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By replacing the third-order determinant by a fourth-order determinant, one 
can develop a simultaneous, three-step, division-free, elimination algorithm sim- 
ilar to the two-step algorithm (8), and so on. Each of these algorithms will pro- 
duce smaller integers in the final triangular matrix A (n-I) than the previous algo- 
rithms. 

2. Fraction-free algorithms. The direct use of (1.6) also yields integer-preserving 
transformations, but requires divisions in each step. Letting 1 = k- 1 in (1.6) 
yields (1.8), and the algorithm corresponding to (6) is as follows: 

a(o- 1, a(?)=aij 
(k-1) (k-1) 

ak ak3 
z ($k-1) a(,k-')i aik 'I 

(k~) (k~)a (k-2) a] b , /ak-1,k-1. 

(k =1, ,n-1; i = k + 1, ,n; j=k+ 1, ,m). 

Letting I = - 2 in (1.6) yields 

(k-2) (k-2) (k-2) 
aki-,k1 ak-1,k ak-1, 

(10)(k) __ 1 a(k-2) (k-2) (k-2) (10) a a a- 
[ak-23k2 a2k,k-1 akk ak, [ak-2k-21 (k-2) (k-2) (k-2) 

ai,k-1 aik ai3 

According to Section I, the minors of order two are divisible by ak -232. Thus, we 
have the following two algorithms (restricting ourselves, as before, to row-by-row 
transformations only). The first alternative is as follows: 

a(ool)= a~t??= a~ 
(k-2) o(k-2) (k-2)C (k-2) (k-2) (k-2) CO k - + ak_,,Jci2 

(~k) (k)/ (k-i) 2 (11) ace = be /[ak2,k-21; 
(k-1) (k-2) (k-2) (k-2) (k-2) 

bk I = ak-1,k-lak I - ak,k-jak.-, ; 

a(k-1) (k) (k-1) (k-3) (k-i = ak I= bk I /ak-2,k .2 

In this algorithm, the C(k-2), c k-2), c(k-2) are computed as in (8). Also, the range 
for i, j, k, 1 is the same, and the sequence of computation is prescribed by the flow 
chart shown in Fig. 1. In writing down (11), we have emphasized that divisions 
must be carried out as the last arithmetic operation in determining abed, a(k), to 
preserve fraction-free (i.e., integer) arithmetic. 

For the second alternative, we divide the c's of (11) by ak2,k2 before com- 
puting a9.. This has the advantageous effect that the V~) of (11) will be replaced 
by smaller absolute integers. The net effect in computational efficiency is: one 
multiplication (to obtain [ak-2,k-2] ) is saved, and one division per k-recursion and 
two divisions per i-recursion are added. If one is willing to accept this penalty in 
efficiency (which for large systems is relatively small), the following algorithm 
evolves. In each equation, the division, if any, should be the last arithmetic op- 
eration. We also take advantage of the fact that ak-2,k-2 = ak-2,k-2. 
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(0)~~~~~0 a(O) =S1ia(?) = ai; 
(k-2) (k-2) (k-2) (k-2) (k-2) e(k-2) 

CO = (ak-l ,k_1akk - ak-1,kak,k-1)/ak-2,k-2 ; 

(k-2) (k-2) (k-2) (k-2) (k 2) XX(k-2) 
Cil = (ak-1,ka,,k-1 - ak-1,k-jaik )/ak-2,k-2 k 

(k-2) (k-2) (k-2) (k-2) (k-2) (k-2) (12) cA2 = (akk-laik - akk aik-1)/ak-2,k_2 

)= (a (-2)CO(k-2) + a(k-2) C(k-2) + a(k-2) (k-2) )/a (k-2) 
atj = zj c +akj Cii + - 1k~, ii2 J/k-2,k-2 

fori = k + 1,* ,n ;j = k + 1, ,m; 
(k-1) (k-2) (k-2) (k-2) (k-2) 'k / (k-2) (k) 

aki = (ak-l,k-jakz - ak-1, lak,k-i)/ak-2,k-2= akI 

for = k,* **,m. 

Again, the sequence of computation is prescribed by the flow chart in Fig. 1. As 
shown in Section I, the elements a(k-1) a(n-I) (k = 1, , n), obtained by kk kk ( 
(11) or (12), are the leading principal minors of A; in particular, a,, = IAJ. 

In a similar manner, multistep elimination algorithms can be developed from 
(1.6). 

After A has been reduced to triangular form, the system (1) can be solved for 
X by back substitution, using either rational arithmetic, or another suitable special 
algorithm. The net effect is, of course, the reduction of A to diagonal form. 

B. Reduction of A to Diagonal Form. The extension of the one-step algorithms 
(6) and (9) to achieve reduction of A to diagonal form is simply accomplished by 
applying the transformation also to the elements of the rows 1 to k- 1. Corre- 
sponding to (9), we have the algorithm 

a(-1) = 1 a(?) aij 
a00 =1 at=aj 

(13) atv - kakk ( aa(k 1)-_ akk-3)a (k-) )/ak(k-1) 

(i k; j =k + 1, *,m); 
(k) (k-1) 

ak= aki 

We purposely omitted 

(14) a~k) = a~k) (i( 
( k 

k) 

The algorithm (13) needs some explanation. To begin with, the last equation in 
(13) states that only row k remains unchanged; in particular, that akk) = a k-1) 

Applying this identity to the divisor ak-l2k-1 of (9), we have written for the divisor 
in (13) not a (-2k) but a U-1L Assume now that (14) is true for (k - 1). Be- 
cause a(ki) = 0 for j < k, it follows from the second line of (13) for a., (i < k), 
from (14) for (k - 1) and from the last equation in (13) that 

(k-i1) (k-i1) O (k-i) (k-i) 
(k) _ akk a - O akk a-Lk-1 (k-1) (k) 
a -~ - akk =akk 

(k-1) (k-1) kk - 

ak-.,k-1 ak-4,k-1 

Since this equation is true for k = 2, (14) is true. Thus, when k = n, A (n) B n 

should have the form 

..o (n) . (n)1 n . .. 0 aljn+1 ... am . 
(15) A (n) E3 B(n)= . . .. 

{) (n) (n) (n) 
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where n- = A 1. Then the solution to (1) is given by 

(16) X rs arn+8/ann . 

Note that the numerator and denominator in (16) have the same numerical values 
as if (1) were solved by Cramer's rule. 

However, algorithm (13) as presented above yields not the matrix (15) in the 
fast memory, but, after proper identification of the actual operations, 

[(0) (1) (2) (n-i) (n) (nY1 
all a12 a13 

. . . aln al,n+l ... aim 

a(?) a(l) a(2) a(n-1) a(n) a(n)| a21 a22 a23 ..a2,n a2,fl+ -a2m 

(17) a31 a32 a33 . . . a3, a3,n+l . . . a3m 

L ?O) a~l) a(2) a(n-1) (n) (n) 

and the solution of (1) is then given by 

(18) xr, = ar n+8/4n 

which is identical to (16). The elements a1k-1) in (17) are now the leading principal 
minors of A, as given by (1.3). 

Next, we implement the two-step algorithm (12) to yield a reduction of A to 
diagonal form. Assume diagonalization has been achieved up to a k-3) 2. Then the 
application of (10) to the a.4-2)'s of all rows except i = k -1 and i k yields the 
matrix 

a(k-2) 
A a k).,? 

ak-2,k-2 (k-2),k . 1 

(19) *.. 0 a~~~~~~~~~i(-2 a(k-2) a(k-2) (19) 0ak-l,k-1 ak-l ,k ak-lk=2) 
. 

0 ~~~~(k2 a(k-2) a(k-2) . ...0 ak,k-1 akk (k-2)l 

0 0 0 ~~~~~~~~~~~~(k) . . . 0 ? ? ak+l,k+l ... 

The element a kk2) in (19) is then transformed to zero by the last equation of (12) 
to yield 

a(k-2) 0 a(k) 
ak2,k-2 0 ak-2,k+1 . 

(k-2) (k-2) (k-2) 

(20) 0 aklk1 ak.l,k ak.lk+l . . . 

(k-1) (k-I) 
0 0 akk akk+l . . . 

(k) 
0 0 ak+l,k+l 

It remains to transform a k-2) to zero. We note that in (20), 
(k-2) (k-i) 

akl,J = ak-1 j 

But then, (13) can be applied to calculate a.c) for i = k-1. 
To terminate the iteration process, we will have to distinguish as before be- 

tween n even and n odd and omit the appropriate algorithms, which become un- 
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necessary. The final matrix A(n) E Ban) again has the theoretical appearance (15); 
and the actual contents of the memory cells of the original a.? are given by (17). 
The solution of (1) is given by (18). 

Thus we have the following algorithm, where the division, if any, should be 
the last arithmetic operation: 

a(O) = 1 aj) = ai; 
(k-2) (a (k-2) (k-2) (k-2) (k-2) / (k-2) 

C0 - (ak-1,k-lakk k -1 ,kakk-1)/ak-2,k-2 

(k-2) , (k-2) (k-2) (k-2) (k-2) ' / (k-2) 
Ciu = (ak-1 kaik-1 - ak-1,k-1aik )/ak-2,k-2 

(k-2) __ (k-2) (k-2) (k-2) (k-2) (k-2) (21) Ci2 = (akk 2aik - akk a,,k-l)/ak-2,k-2 

(k) =( (-2)C (k-2) + a(k 2)C (k - ( k_ -2 /ak-2k 
Si a72c akj ci1 + k-2) j (k2) (k-2)k- 

for i F! ky i F! k - I j = k + 1, * ,m; 
(k-1) (k-2) (k-2) (k-2) (k-2) \ (k-2) (k) 

akp = (ak-lk_lakp -akk-jak-1,p)/ak-2,k2 = akp 

(p = k, ***,m); 
(k) (k-1) (k-2) (k-1) (k-2) \ (k-2) 

ak-i,q = (akk ak-1,q - akq ak-1,k)/ak-1,k-1 

(q = k + 1, ***,m); 
and finally if n is odd 

= (n-i(n-n-i) (n-1) (n-i) (na-i) a() = (ann 1a( - anj ain )/an-in1 

(i= 1,2, nn-1,j=n+ , -..., m). 

Again we have omitted a~k = a(k) (i = 1, *, k - 1). The sequence of com- 
putation is prescribed by the flow chart shown in Fig. 2. 

In a similar way, one can construct three-step elimination algorithms, and so on. 

HI. Fraction-Producing and Multiplication-Free Elimination Methods. For 
completeness and comparison, it should be recognized that one can improve the 
efficiency of the elimination by reducing diagonal elements to unity, but thereby 
sacrificing integer preservation: 

(1) a(k = 
(k-1) 

/ak(k-1) a,,, = a(k-1) - a(k-1)a(k) 

Several equivalent techniques have been devised for the proper utilization of the 
Gaussian algorithm (1) to bring a square matrix into triangular form.tt All use 
(m - k) divisions and (m - k) (n - k) multiplications and subtractions each to 
obtain A (k) from A (k-1) 

The two-step algorithms of the previous sections can be reduced to 

(k-i1) (k-2) (k-i) 
ak1, J = ak 1,J/ak-1,k-1 (=j k., ***,m) 

a(k-i) =a(k-2) a(k-2) a(k-i) ( y..,m 
(2) aki k - akk2)ak.J-1 (j = k, ** , m) 

I(k) (k-i) (k-i) k *m 
ak3 = aki /akk (j- k+ 1, * *,m) 

(k) = a(k-2) a(k) C(k) 
( 

ak-ia) k-2) 
(j k + 1, * , m) 

where 

tt M. H. Doolittle (1878), T. Banachiewicz (1938), and P. D. Crout (1942). 
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C; = a -k a k-2)aRk-l2 (i = k + 1, *.. , n). 

For the reduction of A (k-2) to A (k) by this arrangement, both (1) and (2) need 
the same number of arithmetic operations, namely 2(m - k) + 1 divisions, and 
2(m - k)(n - k) + (n - k) + (m - k) + 1 multiplications and subtractions 
each. In (2), as against (1), only about half the number of new words need to be 
addressed to obtain a new element a (.). But this advantage is balanced by the need 
for a more complicated algorithm (2). Thus, under the assumptions of this sec- 
tion, no significant advantage can be expected by using (2). 

XTr a a =3 0 (i I) 

~~~~~~~~~~~~~~~~~~~~~~Es 

alwanso to 

Fig./2 . Flow (k-i) ( ok-i 

aall-aye oe bk a s , g 

(3) al a/1/) - a(.k-l/2k- ) (ij > k) ) 
() = 1) a=--1) (i o u 

were akkj) of a~k2-2, Ofcus.There are (m - k) (n - k + 1) divisions and 
(m- k) (n -k) subtractions but no multiplications necessary to transform A (k-1) 
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into A (k). For modem computers, which divide as fast, or nearly as fast, as they 
multiply, (3) is better suited, for the pivoting sweep and division sweep can be 
combined into a single sweep. The algorithm (3) can also be used to transform A 
into diagonal form with a .z.) = 1 (i = 1, *,n) by changing (i > k) into (i - k). 

IV. Efficiency of the Integer-Preserving Algorithms. To transform A (k-i) into 
A (M) in the process of reducing A to triangular form, the one-step integer-preserv- 
ing methods need 

2(m - k)(n - k) multiplications, 

(m - k) (n - k) subtractions, 

and, unless we choose the division-free algorithm (2.6), 

(m - k) (n - k) divisions. 

To advance from A (k-2) to A (k), we need 

4(m - k)(n - k) + 2(n - k) + 2(m - k) + 2 multiplications, 

and 

2(m - k) (n - k) + (n - k) + (m - k) + 1 subtractions and divisions, if any. 

To advance from A (k-2) to A (k), the corresponding two-step method (2.12) uses 

3(m - k)(n - k) + 4(n - k) + 2(m - k + 1) + 2 multiplications, 

2(m - k)(n - k) + 2(n - k) + (m - k + 1) + 1 additions or subtractions, 

and 

(m-k)(n-k) + 2(n-k) + (m-k + 1) + 1 divisions. 

Algorithm (2.11) uses 2(n - k) + 1 divisions less and one multiplication more. 
Algorithm (2.8) uses no divisions at all. 

For the fraction-producing algorithms of Section III, the algorithms (3.1) and 
(3.2) need 

2(m - k)(n - k) + (n - k) + (m - k) + 1 multiplications, 

2(m - k)(n - k) + (n - k) + (m - k) + 1 subtractions, 

and 

2(m - k) + 1 divisions 

each to transform A (k-2) into A (k). Algorithm (3.3) needs no multiplications, the 
same number of subtractions, but 

2(m-k)(n-k) + (n-k) + 3(m-k) + 2 divisions. 

Thus, for large mn, the proportions of the number of multiplications in the one- 
step integer-preserving to the two-step integer-preserving to the fraction-producing 
elimination algorithms are about 4:3:2. A comparison of the number of divisions 
does not carry much weight, since they were introduced to obtain absolute smallest 
integers and are optional. One can postpone divisions until overflow forces a re- 
duction in the magnitude of the integers. 
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The integer-preserving algorithms (2.12) and (2.21) can be used to devise an 
absolutely stable general elimination routine. Assume that through a preliminary 
transformation the elements aij became of roughly equal order of magnitude. Then 
the aij are truncated and the decimal point removed. The new elements are in- 
tegers and designated by a^q). The matrix (anq)) is then subjected to (2.12) or 
(2.21). We note that for noninteger ai3's, initial truncations can never be avoided 
on computers that work in the binary system, unless the aij's are given as binary 
numbers, and then only if they can be represented accurately within a given word 
length. Because (2.12) and (2.21) yield in the general case the absolute smallest 
possible integers, the largest magnitude of any auxiliary number is of order 
max det (aij). This value can be used to estimate the maximum integer word 
length. The algorithms of Section III, in contrast, can never be reduced to a routine 
free of rounding errors after (a(?)) is given. 

If floating-point arithmetic is used, and the ai/s are given as exact fractions 
with only a few significant figures relative to the total word length, (2.12) and 
(2.21) can be expected to yield more accurate solutions than (3.1) or (3.3). 

We conclude with the following remark: Algorithm (2.12) was originally de- 
veloped to provide for expansion of a determinant of general commutative ele- 
ments (such as polynomials, or elements of an Abelian group, etc.). Its further use- 
fulness in numerical application is most welcome. 

V. Remarks on Pivoting. In any single-step (i.e., ordinary) Gaussian-type 
elimination, pivoting becomes necessary when, in the course of computation, 
a(k-1) = 0 in (2.6), (2.9), (2.13), or (3.1). 

In the two-step elimination methods, pivoting becomes necessary when 
C(k-2) = 0 in (2.12) and (2.21). The fifth line in each of these equations shows 
that in this case the a .-2) would not participate in the transformation. Thus we 
have to interchange row k and/or k - 1 with rows i > k of A (k-2) until we obtain 
a c k-2) $? 0. If this is not possible, A is singular. Because single-step elimination 
is used in transforming row k, the element ak U2) must also not be zero. There- 
fore, it is recommended to add a pivoting algorithm to (2.12) and (2.21). Of sev- 
eral possibilities, one may follow the flow chart given in Fig. 3. 

If A is symmetric, it is recommended that corresponding rows and columns be 
interchanged simultaneously to preserve the symmetry of the transformed matrices 
A(k) 

VI. Notes on Bibliography. In going through M'luir's five volumes of The 
Theory of Determinants [11], the author could find no reference to a multistep 
approach in elimination methods as introduced here with the general transforma- 
tion represented by (1.6). Readers are invited to let the author know of any re- 
lated publications of which they may have any knowledge. 

The one-step method was already known to Jordan. Brief description can be 
found in the recent books by Durand [5] and Fox [6]. An Algol code was published 
by Boothroyd [3] in 1966. 

The two-step method was coded by Garbow [7] in Fortran, and the program is 
available on request. It can operate in either single or multiple precision. 
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Another efficient one-step method for the evaluation of determinants is the 
method of contractants [10], already known in f866 [4]. Its efficiency is identical 
to the one-step transformation (1.8), but it cannot be extended to the solution of 
systems of linear equations. Furthermore, before each transformation, "interior" 
zeros (i.e., zero elements a*5) that may occur anywhere in A (k) except in the out- 
side rows or columns) must be removed [9]. Therefore, for the evaluation of de- 
terminants, even the one-step Gaussian elimination seems to be preferable to the 
method of contractants. 

Wees 
2 no ntorohasg row s and k - 1: 

,(-) (a 2) t-?) 

| e { a jnguZ<r) 

|nt 

|j. 5 

)2 (k-2)k 

| 

,.~~~~~~~~~~s 
Det ~( A ~ ~ ' -ar ' - . 

Fig. 3. Pivot-searching Subroutine to Algorithms (2.12) and (2.21), 

Replacing Box ? J in Figs. 1 and 2 

J. B. Rosser's method [12] uses elementary transformations to reduce the ele- 
ments of the given matrix to smaller absolute values. It is essentially a search 
method with a number of "do- and don't-" rules, and is a one-step method. 

There is no question that for maximum efficiency in any integer-preserving 
elimination code, the elements of all the rows and columns respectively should be 
made relatively prime to each other before starting the elimination process. 

The use of exact matrix inversion routines for medium-sized problems is eco- 
nomical for routine work of computational service work, since no error estimates 
have to be supplied. 

Exact methods as presented here can also be used with noninteger-preserving 
arithmetic. Chances are good that the nearly singular part of the problem, if any, 
is passed before the full precision of the arithmetic unit is fully utilized. 

As mentioned at the end of Section IV, the multistep method can also be ap- 
plied to the mechanized algebraic (i.e., nonnumeric) expansion of determinants be- 
cause of the simple logical flow of the operations. Such expansions were carried 
out for circulants of order 2 to 8 on the CDC 3600 as reported briefly in [2]. 

Since the derivation of the multistep method makes use of the commutativity 
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of the elements, it cannot, in general, be extended to block matrices. The method 
is different from the Gaussian block elimination methods discussed in the literature. 
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